New Algorithms for Barrier Coverage with Mobile Sensors
نویسندگان
چکیده
Monitoring and surveillance are important aspects in modern wireless sensor networks. In applications of wireless sensor networks, it often asks for the sensors to quickly move from the interior of a specified region to the region’s perimeter, so as to form a barrier coverage of the region. The region is usually given as a simple polygon or even a circle. In comparison with the traditional concept of full area coverage, barrier coverage requires fewer sensors for detecting intruders, and can thus be considered as a good approximation of full area coverage. In this paper, we present an O(n log n) time algorithm for moving n sensors to the perimeter of the given circle such that the new positions of sensors form a regular n-gon and the maximum of the distances travelled by mobile sensors is minimized. This greatly improves upon the previous time bound O(n log n). Also, we describe an O(n) time algorithm for moving n sensors, whose initial positions are on the perimeter of the circle, to form a regular n-gon such that the sum of the travelled distances is minimized. This solves an open problem posed in [2]. Moreover, our algorithms are simpler and have more explicit geometric flavor.
منابع مشابه
Barrier coverage with line-based deployed mobile sensors
Barrier coverage of a wireless sensor network is a critical issue in military and homeland security applications, aiming to detect intruders that attempt to cross the deployed region. While a range of problems related to barrier coverage have been investigated, little effort has been made to explore the effects of different sensor deployment strategies and mechanisms to improve barrier coverage...
متن کاملApproximation Algorithms for Barrier Sweep Coverage
Time-varying coverage, namely sweep coverage is a recent development in the area of wireless sensor networks, where a small number of mobile sensors sweep or monitor comparatively large number of locations periodically. In this article we study barrier sweep coverage with mobile sensors where the barrier is considered as a finite length continuous curve on a plane. The coverage at every point o...
متن کاملConstructing event-driven partial barriers with resilience in wireless mobile sensor networks
A barrier-coverage in wireless mobile sensor networks (WMSN) has attracted lots of interests recently. It is highly desirable to consider a barrier-coverage that can detect any moving objects between multiple sides in an event-driven environment. In this paper, we introduce a new architecture of barrier, event-driven partial barrier, which is able to monitor any movements of objects in the even...
متن کاملDistributed restoring of barrier coverage in wireless sensor networks using limited mobility sensors
In Wireless Sensor Networks, sensors are used for tracking objects, monitoring health and observing a region/territory for different environmental parameters. Coverage problem in sensor network ensures quality of monitoring a given region. Depending on applications different measures of coverage are there. Barrier coverage is a type of coverage, which ensures all paths that cross the boundary o...
متن کاملMaximizing Barrier Coverage Lifetime with Mobile Sensors
Sensor networks are ubiquitously used for detection and tracking and as a result covering is one of the main tasks of such networks. We study the problem of maximizing the coverage lifetime of a barrier by mobile sensors with limited battery powers, where the coverage lifetime is the time until there is a breakdown in coverage due to the death of a sensor. Sensors are first deployed and then co...
متن کامل